Hierarchical Bayesian Estimation of Quantum Decision Model Parameters

Jerome R. Busemeyer¹, Zheng Wang² and Jennifer S. Trueblood³

¹Indiana University, ²Ohio State University and ³University of California, Irvine

June 27, 2012

• Violations of classic probability theory also occur in human decision making

- Violations of classic probability theory also occur in human decision making
- Quantum probability theory successfully accounts for some paradoxical phenomena that have resisted explanation by traditional decision theories

- Violations of classic probability theory also occur in human decision making
- Quantum probability theory successfully accounts for some paradoxical phenomena that have resisted explanation by traditional decision theories
 - violations of Savage's sure thing principle (Pothos & Busemeyer, Proc Royal Society B, 2009)

- Violations of classic probability theory also occur in human decision making
- Quantum probability theory successfully accounts for some paradoxical phenomena that have resisted explanation by traditional decision theories
 - violations of Savage's sure thing principle (Pothos & Busemeyer, Proc Royal Society B, 2009)
 - interference of categorization on decisions (Busemeyer, Wang, et al., J. Math Psych, 2009)

- Violations of classic probability theory also occur in human decision making
- Quantum probability theory successfully accounts for some paradoxical phenomena that have resisted explanation by traditional decision theories
 - violations of Savage's sure thing principle (Pothos & Busemeyer, Proc Royal Society B, 2009)
 - interference of categorization on decisions (Busemeyer, Wang, et al., J. Math Psych, 2009)
 - order effects in inference (Trueblood & Busemeyer, Cog Sci, 2011)

- Violations of classic probability theory also occur in human decision making
- Quantum probability theory successfully accounts for some paradoxical phenomena that have resisted explanation by traditional decision theories
 - violations of Savage's sure thing principle (Pothos & Busemeyer, Proc Royal Society B, 2009)
 - interference of categorization on decisions (Busemeyer, Wang, et al., J. Math Psych, 2009)
 - order effects in inference (Trueblood & Busemeyer, Cog Sci, 2011)
 - conjunction and disjunction fallacies (Busemeyer, et al., Psych Rev, 2011)

• Perhaps quantum probability succeeds where traditional models fail simply because it is more complex

- Perhaps quantum probability succeeds where traditional models fail simply because it is more complex
- Bayesian model comparison provides a coherent method for comparing models with respect to both accuracy and parsimony

- Perhaps quantum probability succeeds where traditional models fail simply because it is more complex
- Bayesian model comparison provides a coherent method for comparing models with respect to both accuracy and parsimony
- This paper uses hierarchical Bayesian parameter estimation to investigate the parameter values of quantum and traditional decision models for a challenging set of data

- Describe phenomena and data
- ② Describe models and fits to mean data

- Describe phenomena and data
- ② Describe models and fits to mean data
- Analysis of Log likelihood

- Describe phenomena and data
- ② Describe models and fits to mean data
- Analysis of Log likelihood
- 9 Hierarchical Bayesian estimation of quantum parameters

Describe phenomena and data

э

Image: A math a math

Suppose

• when S is the state of the world, you prefer action A over B.

Suppose

- when S is the state of the world, you prefer action A over B.
- when \bar{S} is the state of the world, then you also prefer action A over B

Suppose

- when S is the state of the world, you prefer action A over B.
- when \bar{S} is the state of the world, then you also prefer action A over B
- Therefore you should prefer A over B even when S is unknown

• Person is faced with a gamble 'win \$200 or lose \$100'

- Person is faced with a gamble 'win \$200 or lose \$100'
- The game is played twice and the first play is obligatory

- Person is faced with a gamble 'win \$200 or lose \$100'
- The game is played twice and the first play is obligatory
- Before the second play, the player can decide whether or not to play again

- Person is faced with a gamble 'win \$200 or lose \$100'
- The game is played twice and the first play is obligatory
- Before the second play, the player can decide whether or not to play again
- Three conditions were examined

- Person is faced with a gamble 'win \$200 or lose \$100'
- The game is played twice and the first play is obligatory
- Before the second play, the player can decide whether or not to play again
- Three conditions were examined
 - Outcome of first play was a known win

- Person is faced with a gamble 'win \$200 or lose \$100'
- The game is played twice and the first play is obligatory
- Before the second play, the player can decide whether or not to play again
- Three conditions were examined
 - Outcome of first play was a known win
 - Outcome of the first play was a known loss

- Person is faced with a gamble 'win \$200 or lose \$100'
- The game is played twice and the first play is obligatory
- Before the second play, the player can decide whether or not to play again
- Three conditions were examined
 - Outcome of first play was a known win
 - Outcome of the first play was a known loss
 - Outcome of the first play was unknown

• When first play was a known win,

- When first play was a known win,
 - Probability play second gamble = .69

- When first play was a known win,
 - Probability play second gamble = .69
- When first play was a known loss,

- When first play was a known win,
 - Probability play second gamble = .69
- When first play was a known loss,
 - Probability play second gamble = .59

- When first play was a known win,
 - Probability play second gamble = .69
- When first play was a known loss,
 - Probability play second gamble = .59
- When first play was unknown

- When first play was a known win,
 - Probability play second gamble = .69
- When first play was a known loss,
 - Probability play second gamble = .59
- When first play was unknown
 - Probability play second gamble = .36

- When first play was a known win,
 - Probability play second gamble = .69
- When first play was a known loss,
 - Probability play second gamble = .59
- When first play was unknown
 - Probability play second gamble = .36
- Violates Sure thing principle and law of total probability

- When first play was a known win,
 - Probability play second gamble = .69
- When first play was a known loss,
 - Probability play second gamble = .59
- When first play was unknown
 - Probability play second gamble = .36
- Violates Sure thing principle and law of total probability
 - Prob play second when first is unknown = (prob win first \times prob play given win) + (prob lose first \times prob play given loss) > prob play given loss

• Dynamic consistency: Final decisions agree with planned decisions

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Then they made a plan and a final choice about stage two

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Then they made a plan and a final choice about stage two
- Plan

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Then they made a plan and a final choice about stage two
- Plan
 - If you win, do you plan to gamble on stage two?

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Then they made a plan and a final choice about stage two
- Plan
 - If you win, do you plan to gamble on stage two?
 - If you lose, do you plan to gamble on stage two?

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Then they made a plan and a final choice about stage two
- Plan
 - If you win, do you plan to gamble on stage two?
 - If you lose, do you plan to gamble on stage two?
- Final decision

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Then they made a plan and a final choice about stage two
- Plan
 - If you win, do you plan to gamble on stage two?
 - If you lose, do you plan to gamble on stage two?
- Final decision
 - After an actual win, do you now choose to gamble on stage two?

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Then they made a plan and a final choice about stage two
- Plan
 - If you win, do you plan to gamble on stage two?
 - If you lose, do you plan to gamble on stage two?
- Final decision
 - After an actual win, do you now choose to gamble on stage two?
 - After an actual loss, do you now choose to gamble on stage two?

- Dynamic consistency: Final decisions agree with planned decisions
- Used same two stage gambling paradigm as Tversky & Shafir (1992)
- Forced to play stage one but outcome remained initially unknown
- Then they made a plan and a final choice about stage two
- Plan
 - If you win, do you plan to gamble on stage two?
 - If you lose, do you plan to gamble on stage two?
- Final decision
 - After an actual win, do you now choose to gamble on stage two?
 - After an actual loss, do you now choose to gamble on stage two?
- Randomly chose either the plan or the final to determine monetary payment

• equally likely chance to win \$x or lose \$y

- equally likely chance to win \$x or lose \$y
- $\bullet\,$ varied x,y to produce EV's ranging from -\$10 to +\$50

- equally likely chance to win \$x or lose \$y
- varied x,y to produce EV's ranging from -\$10 to +\$50
- Each gamble replicated twice except first gamble

- equally likely chance to win \$x or lose \$y
- varied x,y to produce EV's ranging from -\$10 to +\$50
- Each gamble replicated twice except first gamble
 - 33 trials per person

- equally likely chance to win \$x or lose \$y
- varied x,y to produce EV's ranging from -\$10 to +\$50
- Each gamble replicated twice except first gamble
 - 33 trials per person
- Plan and final decision on each gamble

- equally likely chance to win \$x or lose \$y
- varied x,y to produce EV's ranging from -\$10 to +\$50
- Each gamble replicated twice except first gamble
 - 33 trials per person
- Plan and final decision on each gamble
 - $33 \times 2 = 66$ choices per person $\rightarrow D_i$ (data vector)

- equally likely chance to win \$x or lose \$y
- varied x,y to produce EV's ranging from -\$10 to +\$50
- Each gamble replicated twice except first gamble
 - 33 trials per person
- Plan and final decision on each gamble
 - $33 \times 2 = 66$ choices per person $\rightarrow D_i$ (data vector)
- 100 participants

Gamble		Win First Play		Gamble		Lose First Play	
Win	Loss	Plan	Final	Win	Loss	Plan	Final
200	220	0.46	0.34	80	100	0.36	0.44
180	200	0.45	0.35	100	120	0.47	0.63
200	200	0.59	0.51	100	100	0.63	0.64
120	100	0.70	0.62	200	180	0.57	0.69
140	100	0.62	0.54	160	140	0.68	0.69
200	140	0.63	0.53	200	160	0.67	0.72
200	120	0.74	0.68	160	100	0.65	0.73
200	100	0.79	0.70	180	100	0.68	0.80
				200	100	.85	.82

• After a win, players became more risk averse

- After a win, players became more risk averse
 - changed from planning to play again to finally not playing again

- After a win, players became more risk averse
 - changed from planning to play again to finally not playing again
- After a loss, players become more risk seeking

- After a win, players became more risk averse
 - changed from planning to play again to finally not playing again
- After a loss, players become more risk seeking
 - changed from not planning to play again to finally playing again

Describe models

∃ →

(日) (日) (日) (日)

- Quantum model
 - Recently developed by Pothos & Busemeyer (2009)

- Recently developed by Pothos & Busemeyer (2009)
- model explains results for the gambling paradigm

- Recently developed by Pothos & Busemeyer (2009)
- model explains results for the gambling paradigm
- same model also explains results for prisoner dilemma paradigm

- Recently developed by Pothos & Busemeyer (2009)
- model explains results for the gambling paradigm
- same model also explains results for prisoner dilemma paradigm
- Markov model

- Recently developed by Pothos & Busemeyer (2009)
- model explains results for the gambling paradigm
- same model also explains results for prisoner dilemma paradigm
- Markov model
 - Reduction of the quantum model when one key parameter is set to zero

• Four events correspond to four outcomes from two stage gamble: $\{|WT\rangle, |WR\rangle, |LT\rangle, |LR\rangle\}$

- Four events correspond to four outcomes from two stage gamble: $\{|WT\rangle, |WR\rangle, |LT\rangle, |LR\rangle\}$
 - W = win first gamble, L = lose first gamble

- Four events correspond to four outcomes from two stage gamble: $\{|WT\rangle, |WR\rangle, |LT\rangle, |LR\rangle\}$
 - W = win first gamble, L = lose first gamble
 - T = take second gamble, R = reject second gamble

- Four events correspond to four outcomes from two stage gamble: $\{|WT\rangle, |WR\rangle, |LT\rangle, |LR\rangle\}$
 - W = win first gamble, L = lose first gamble
 - T = take second gamble, R = reject second gamble
- State of the decision maker is a superposition over these four orthonormal basis states:

$$|\psi\rangle = \psi_{WT} \cdot |WT\rangle + \psi_{WR} \cdot |WR\rangle + \psi_{LT} \cdot |LT\rangle + \psi_{LR} \cdot |LR\rangle$$

- Four events correspond to four outcomes from two stage gamble: $\{|WT\rangle, |WR\rangle, |LT\rangle, |LR\rangle\}$
 - W = win first gamble, L = lose first gamble
 - T = take second gamble, R = reject second gamble
- State of the decision maker is a superposition over these four orthonormal basis states:

$$|\psi
angle = \psi_{WT} \cdot |WT
angle + \psi_{WR} \cdot |WR
angle + \psi_{LT} \cdot |LT
angle + \psi_{LR} \cdot |LR
angle$$

• From first gamble to second gamble:

$$\psi_F = U \cdot \psi_I$$
 $U = \exp\left(-i \cdot \frac{\pi}{2} \cdot (H_1 + H_2)\right)$

• Hamiltonian = $H_1 + H_2$:

$$H_{1} = \begin{bmatrix} \frac{h_{W}}{\sqrt{1+h_{W}^{2}}} & \frac{1}{\sqrt{1+h_{W}^{2}}} & 0 & 0\\ \frac{1}{\sqrt{1+h_{W}^{2}}} & \frac{-h_{W}}{\sqrt{1+h_{W}^{2}}} & 0 & 0\\ 0 & 0 & \frac{h_{L}}{\sqrt{1+h_{L}^{2}}} & \frac{1}{\sqrt{1+h_{L}^{2}}}\\ 0 & 0 & \frac{1}{\sqrt{1+h_{L}^{2}}} & \frac{-h_{L}}{\sqrt{1+h_{L}^{2}}} \end{bmatrix}$$
$$H_{2} = \frac{-\gamma}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & -1 & 0 & 1\\ 1 & 0 & -1 & 0\\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Image: A matrix of the second seco

3

• Hamiltonian = $H_1 + H_2$:

$$H_{1} = \begin{bmatrix} \frac{h_{W}}{\sqrt{1+h_{W}^{2}}} & \frac{1}{\sqrt{1+h_{W}^{2}}} & 0 & 0\\ \frac{1}{\sqrt{1+h_{W}^{2}}} & \frac{-h_{W}}{\sqrt{1+h_{W}^{2}}} & 0 & 0\\ 0 & 0 & \frac{h_{L}}{\sqrt{1+h_{L}^{2}}} & \frac{1}{\sqrt{1+h_{L}^{2}}}\\ 0 & 0 & \frac{1}{\sqrt{1+h_{L}^{2}}} & \frac{-h_{L}}{\sqrt{1+h_{L}^{2}}} \end{bmatrix}$$
$$H_{2} = \frac{-\gamma}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & -1 & 0 & 1\\ 1 & 0 & -1 & 0\\ 0 & 1 & 0 & 1 \end{bmatrix}$$

• h_W , h_L = utilities for taking the gamble or not; γ = free parameter allowing for changes in beliefs

• utilities for taking the gamble after a win

$$h_{W} = \frac{2}{1 + e^{-D_{W}}} - 1$$

$$D_{W} = u(G|Win) - x_{W}^{a}$$
if $(x_{W} - x_{L}) > 0$:
$$u(G|Win) = (.50) \cdot (x_{W} + x_{W})^{a} + (.50) \cdot (x_{W} - x_{L})^{a}$$
if $(x_{W} - x_{L}) < 0$:
$$u(G|Win) = (.50) \cdot (x_{W} + x_{W})^{a} - (.50) \cdot b \cdot |(x_{W} - x_{L})|^{a}$$
• utilities for taking the gamble after a loss

$$h_{L} = \frac{2}{1 + e^{-D_{L}}} - 1$$

$$D_{L} = u(G|Loss) - (-b \cdot x_{L}^{a})$$
if $(x_{W} - x_{L}) > 0$:
$$u(G|Loss) = (.50) \cdot (x_{W} - x_{L})^{a} - (.50) \cdot b \cdot (x_{L} + x_{L})^{a}$$
if $(x_{W} - x_{L}) < 0$:
$$u(G|Loss) = -(.50) \cdot b \cdot |(x_{W} - x_{L})|^{a} - (.50) \cdot b \cdot (x_{L} + x_{L})^{a}$$

• Projection matrix for taking the gamble:

$$M = \begin{bmatrix} T & 0 \\ 0 & T \end{bmatrix}, \ T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

э

• Projection matrix for taking the gamble:

$$M = egin{bmatrix} T & 0 \ 0 & T \end{bmatrix}$$
, $T = egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}$

• ψ_I = first gamble unknown, ψ_W = win first gamble, ψ_L = lose first gamble

• Projection matrix for taking the gamble:

$$M = egin{bmatrix} T & 0 \ 0 & T \end{bmatrix}$$
, $T = egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}$

- ψ_I = first gamble unknown, ψ_W = win first gamble, ψ_L = lose first gamble
- The probability of planning to take the second stage gamble

$$p(T|Plan) = ||M \cdot U \cdot \psi_I||^2$$

• Projection matrix for taking the gamble:

$$M = \begin{bmatrix} T & 0 \\ 0 & T \end{bmatrix}$$
, $T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

- ψ_I = first gamble unknown, ψ_W = win first gamble, ψ_L = lose first gamble
- The probability of planning to take the second stage gamble

$$p(T|Plan) = ||M \cdot U \cdot \psi_I||^2$$

• The probability of taking the second stage game following a win

$$p(T|Win) = ||M \cdot U \cdot \psi_W||^2$$

• Projection matrix for taking the gamble:

$$M = \begin{bmatrix} T & 0 \\ 0 & T \end{bmatrix}$$
, $T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

- ψ_I = first gamble unknown, ψ_W = win first gamble, ψ_L = lose first gamble
- The probability of planning to take the second stage gamble

$$p(T|Plan) = ||M \cdot U \cdot \psi_I||^2$$

• The probability of taking the second stage game following a win

$$p(T|Win) = ||M \cdot U \cdot \psi_W||^2$$

The probability of taking the second stage game following a loss

$$p(T|Loss) = ||M \cdot U \cdot \psi_L||^2$$

 If γ ≠ 0 then the quantum model produces interference that accounts for dynamic inconsistency effects:

$$\begin{split} ||M \cdot U \cdot \psi_{I}||^{2} &= \frac{1}{2} \cdot ||M \cdot U \cdot (\psi_{W} + \psi_{L})||^{2} \\ &= \frac{1}{2} \cdot ||M \cdot U \cdot \psi_{W} + M \cdot U \cdot \psi_{L}||^{2} \\ &= \frac{1}{2} \cdot ||M \cdot U \cdot \psi_{W}||^{2} + \frac{1}{2} \cdot ||M \cdot U \cdot \psi_{L}||^{2} \\ &+ \frac{1}{2} \cdot (\psi_{W}^{\dagger} \cdot U \cdot M) \cdot (M \cdot U \cdot \psi_{L}) \\ &+ \frac{1}{2} \cdot (\psi_{L}^{\dagger} \cdot U \cdot M) \cdot (M \cdot U \cdot \psi_{W}) \end{split}$$

• The Markov model is a special case of the quantum model when $\gamma=0$

э

- The Markov model is a special case of the quantum model when $\gamma=0$
- In this case $(\gamma = 0)$ there are no interference effects

• Fit to 33 means

- Fit to 33 means
- Quantum

- Fit to 33 means
- Quantum
 - Three parameters: a and b used to determine the utilities; γ for changing beliefs to align with actions.

- Fit to 33 means
- Quantum
 - Three parameters: a and b used to determine the utilities; γ for changing beliefs to align with actions.
 - $R^2 = .82$, SSE = .10 (a = .71, b = 2.5, $\gamma = -4.4$)

- Fit to 33 means
- Quantum
 - Three parameters: a and b used to determine the utilities; γ for changing beliefs to align with actions.
 - $R^2 = .82$, SSE = .10 (a = .71, b = 2.5, $\gamma = -4.4$)

• Markov ($\gamma = 0$)

- Fit to 33 means
- Quantum
 - Three parameters: a and b used to determine the utilities; γ for changing beliefs to align with actions.

•
$$R^2 = .82$$
, $SSE = .10$ ($a = .71$, $b = 2.5$, $\gamma = -4.4$)

• Markov
$$(\gamma = 0)$$

•
$$R^2 = .78$$
, $SSE = .12$ ($a = .86$, $b = 2.3$)

Log likelihood analysis

• • • • • • • •

Log likelihood analysis of individual data

• Model for a single trial with choice pair (plan, final)

$$\begin{aligned} r &= \text{ probability recall previous choice} \\ p_{TT} &= \Pr\left[T|plan\right] \cdot r + \Pr\left[T|plan\right] \cdot (1-r) \cdot \Pr\left[T|final\right] \\ p_{TR} &= \Pr\left[T|plan\right] \cdot (1-r) \cdot \Pr\left[R|final\right] \\ p_{RT} &= \Pr\left[R|plan\right] \cdot (1-r) \cdot \Pr\left[T|final\right] \\ p_{RR} &= \Pr\left[R|plan\right] \cdot r + \Pr\left[R|plan\right] \cdot (1-r) \cdot \Pr\left[R|final\right] \\ D_{jk}(t) &= 1 \text{ if } (j, k) \text{ occurs on trial } t, \text{ otherwise } D_{jk}(t) = 0 \\ \ln L(t) &= \sum D_{jk}(t) \cdot \ln(p_{jk}) \end{aligned}$$

• log likelihood for individual *i* on all 33 pairs of trials

$$\ln L(D_i) = \sum_{i=1}^{33} \ln L(t)$$

- Four parameters $\theta = (r, a, b, \gamma)$
- Used a grid of 21 points per parameter
 - 21⁴ combinations
- Memory $r \in [.00, .05, ..., .45, .500, .55, ..., .95, 1.00]$
- Risk Aversion: a ∈ [.400, .45, ..., .85, .90, .95, ..., 1.35, 1.40]
- Loss aversion: $b \in [.50, .60, ..., 1.40, 1.50, 1.60, ...2.40, 2.50]$
- Choice parameter: $\gamma \in [-5.00, -4.5, ..., -.5, 0.0, .5, ..., 4.5, 5.00]$

• Hierarchical Bayesian estimation of quantum parameters

- Hierarchical Bayesian estimation of quantum parameters
- Used to evaluate whether or not $H_0: \ \gamma = 0$ for the quantum model

- $\theta_i :=$ vector of four model parameters $\theta_i = (\theta_{i1}, \theta_{i2}, \theta_{i3}, \theta_{i4})$ for person i
- θ := vector for all participants, 400 parameters
- π := vector of four hierarchical parameters, $\pi = (\pi_1, \pi_2, \pi_3, \pi_4)$
- $L(D_i|\theta_i) :=$ likelihood of data given model parms for person i
- $q(\theta_i|\pi) :=$ prior probability of parameters for person i dependent on hierarchical parm's
- $r(\pi) :=$ prior probability over hierarchical parameters

$$r(\pi) = \prod_{j=1}^{4} r(\pi_{j})$$

$$r(\pi_{j}) = uniform [.05, .10,50, ..., .90, .95]$$

$$q(\theta_{i}|\pi) = \prod_{j} q(\theta_{ij}|\pi_{j})$$

$$q(\theta_{ij}|\pi_{j}) = bin(\pi_{j}, 21)$$

J. Busemeyer (jbusemey@indiana.edu)

$$P(\pi, \theta, D) = r(\pi) \cdot \prod_{i=1}^{N} q(\theta_i | \pi) \cdot L(D_i | \theta_i)$$

$$P(\pi, D) = \sum_{\theta} P(\pi, \theta, D)$$

$$P(D) = \sum_{\pi} P(\pi, D)$$

$$P(\pi | D) = \frac{P(\pi, D)}{P(D)}$$

▲ □ ▶ < □ ▶ < □</p>

2

• The risk aversion hierarchical parameter distribution is located below .50 implying the mean of the risk aversion parameter equals .65, indicating somewhat strong risk aversion

- The risk aversion hierarchical parameter distribution is located below .50 implying the mean of the risk aversion parameter equals .65, indicating somewhat strong risk aversion
- The loss aversion hierarchical parameter distribution is located above .50 implying the mean of the loss aversion equals 1.97, higher sensitivity to losses

• The hierarchical memory parameter is slightly above .50 implying the mean of the memory parameter equals .59

- The hierarchical memory parameter is slightly above .50 implying the mean of the memory parameter equals .59
- The hierarchical distribution for the key quantum parameter lies below .50 implying a mean value equal to -2.67.

• HBA analysis produced posterior for gamma < 0 (quantum regime)

- HBA analysis produced posterior for gamma < 0 (quantum regime)
- Too early to conclude the quantum model is always superior to a Markov model, need to examine more data sets

- HBA analysis produced posterior for gamma < 0 (quantum regime)
- Too early to conclude the quantum model is always superior to a Markov model, need to examine more data sets
- Also need to examine more prior distributions

Thank you

• Busemeyer, J. R. & Bruza, P. D. (2012, June) Quantum models of cognition and decision. Cambridge University Press.