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Quantum Decision Theory

Violations of classic probability theory also occur in human decision
making

Quantum probability theory successfully accounts for some
paradoxical phenomena that have resisted explanation by traditional
decision theories

violations of Savage’s sure thing principle (Pothos & Busemeyer, Proc
Royal Society B, 2009)
interference of categorization on decisions (Busemeyer, Wang, et al., J.
Math Psych, 2009)
order effects in inference (Trueblood & Busemeyer, Cog Sci, 2011)
conjunction and disjunction fallacies (Busemeyer, et al., Psych Rev,
2011)
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Model Complexity Issue

Perhaps quantum probability succeeds where traditional models fail
simply because it is more complex

Bayesian model comparison provides a coherent method for
comparing models with respect to both accuracy and parsimony

This paper uses hierarchical Bayesian parameter estimation to
investigate the parameter values of quantum and traditional decision
models for a challenging set of data
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Outline of paper

1 Describe phenomena and data

2 Describe models and fits to mean data

3 Analysis of Log likelihood

4 Hierarchical Bayesian estimation of quantum parameters
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Topic 1:

Describe phenomena and data
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Savage’s Sure Thing Principle

Suppose

when S is the state of the world, you prefer action A over B.

when S̄ is the state of the world, then you also prefer action A over B

Therefore you should prefer A over B even when S is unknown
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Test of the Sure Thing Principle
Tversky and Shafir (1992, Psych Sci)

Person is faced with a gamble ’win $200 or lose $100’

The game is played twice and the first play is obligatory

Before the second play, the player can decide whether or not to play
again

Three conditions were examined

Outcome of first play was a known win
Outcome of the first play was a known loss
Outcome of the first play was unknown
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Violation of the Sure Thing Principle
Tversky and Shafir (1992, Psych Sci)

When first play was a known win,

Probability play second gamble = .69

When first play was a known loss,

Probability play second gamble = .59

When first play was unknown

Probability play second gamble = .36

Violates Sure thing principle and law of total probability

Prob play second when first is unknown = (prob win first × prob play
given win) + (prob lose first × prob play given loss) > prob play
given loss
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Test of Dynamic consistency
Barkan & Busemeyer (2003, J. of Behavioral Decision Making)

Dynamic consistency: Final decisions agree with planned decisions

Used same two stage gambling paradigm as Tversky & Shafir (1992)

Forced to play stage one but outcome remained initially unknown

Then they made a plan and a final choice about stage two

Plan

If you win, do you plan to gamble on stage two?
If you lose, do you plan to gamble on stage two?

Final decision

After an actual win, do you now choose to gamble on stage two?
After an actual loss, do you now choose to gamble on stage two?

Randomly chose either the plan or the final to determine monetary
payment
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Barkan and Busemeyer (2003) design

17 different gambles

equally likely chance to win $x or lose $y
varied x,y to produce EV’s ranging from -$10 to +$50

Each gamble replicated twice except first gamble

33 trials per person

Plan and final decision on each gamble

33× 2 = 66 choices per person → Di (data vector)

100 participants
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Barkan and Busemeyer (2003) Results

Gamble Win First Play Gamble Lose First Play

Win Loss Plan Final Win Loss Plan Final

200 220 0.46 0.34 80 100 0.36 0.44

180 200 0.45 0.35 100 120 0.47 0.63

200 200 0.59 0.51 100 100 0.63 0.64

120 100 0.70 0.62 200 180 0.57 0.69

140 100 0.62 0.54 160 140 0.68 0.69

200 140 0.63 0.53 200 160 0.67 0.72

200 120 0.74 0.68 160 100 0.65 0.73

200 100 0.79 0.70 180 100 0.68 0.80

200 100 .85 .82
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Dynamic consistency results
Barkan & Busemeyer (2003, Behavioral Decision Making)

After a win, players became more risk averse

changed from planning to play again to finally not playing again

After a loss, players become more risk seeking

changed from not planning to play again to finally playing again
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Topic 2:

Describe models
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Two competing models

Quantum model

Recently developed by Pothos & Busemeyer (2009)
model explains results for the gambling paradigm
same model also explains results for prisoner dilemma paradigm

Markov model

Reduction of the quantum model when one key parameter is set to zero
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Quantum model

Four events correspond to four outcomes from two stage gamble:
{|WT 〉, |WR〉, |LT 〉, |LR〉}

W = win first gamble, L = lose first gamble
T = take second gamble, R = reject second gamble

State of the decision maker is a superposition over these four
orthonormal basis states:

|ψ〉 = ψWT · |WT 〉+ ψWR · |WR〉+ ψLT · |LT 〉+ ψLR · |LR〉

From first gamble to second gamble:

ψF = U · ψI

U = exp
(
−i · π

2
· (H1 + H2)

)
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Quantum model

Hamiltonian = H1 + H2:

H1 =



hW√
1+h2W

1√
1+h2W

0 0

1√
1+h2W

−hW√
1+h2W

0 0

0 0 hL√
1+h2L

1√
1+h2L

0 0 1√
1+h2L

−hL√
1+h2L



H2 =
−γ√

2


1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 1



hW , hL = utilities for taking the gamble or not; γ = free parameter
allowing for changes in beliefs
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Utility parameters

utilities for taking the gamble after a win

hW =
2

1 + e−DW
− 1

DW = u(G |Win)− xa
W

if (xW − xL) > 0:

u(G |Win) = (.50) · (xW + xW )a + (.50) · (xW − xL)
a

if (xW − xL) < 0:

u(G |Win) = (.50) · (xW + xW )a − (.50) · b · |(xW − xL)|a
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Utility parameters

utilities for taking the gamble after a loss

hL =
2

1 + e−DL
− 1

DL = u(G |Loss)− (−b · xa
L)

if (xW − xL) > 0:

u(G |Loss) = (.50) · (xW − xL)
a − (.50) · b · (xL + xL)

a

if (xW − xL) < 0:

u(G |Loss) = −(.50) · b · |(xW − xL)|a − (.50) · b · (xL + xL)
a
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Quantum model

Projection matrix for taking the gamble:

M =

[
T 0
0 T

]
, T =

[
1 0
0 0

]

ψI = first gamble unknown, ψW = win first gamble, ψL = lose first
gamble

The probability of planning to take the second stage gamble

p(T |Plan) = ||M · U · ψI ||2

The probability of taking the second stage game following a win

p(T |Win) = ||M · U · ψW ||2

The probability of taking the second stage game following a loss

p(T |Loss) = ||M · U · ψL||2
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Quantum model

If γ 6= 0 then the quantum model produces interference that accounts
for dynamic inconsistency effects:

||M · U · ψI ||2 =
1

2
· ||M · U · (ψW + ψL)||2

=
1

2
· ||M · U · ψW + M · U · ψL||2

=
1

2
· ||M · U · ψW ||2 +

1

2
· ||M · U · ψL||2

+
1

2
· (ψ†

W · U ·M) · (M · U · ψL)

+
1

2
· (ψ†

L · U ·M) · (M · U · ψW )
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Markov model

The Markov model is a special case of the quantum model when
γ = 0

In this case (γ = 0) there are no interference effects
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Comparing fits to mean data

Fit to 33 means

Quantum

Three parameters: a and b used to determine the utilities; γ for
changing beliefs to align with actions.
R2 = .82, SSE = .10 (a = .71, b = 2.5, γ = −4.4)

Markov (γ = 0)

R2 = .78, SSE = .12 (a = .86, b = 2.3)
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Topic 3:

Log likelihood analysis
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Log likelihood analysis of individual data

Model for a single trial with choice pair (plan, final)

r = probability recall previous choice

pTT = Pr [T |plan] · r + Pr [T |plan] · (1− r) · Pr [T |final ]

pTR = Pr [T |plan] · (1− r) · Pr [R |final ]

pRT = Pr [R |plan] · (1− r) · Pr [T |final ]

pRR = Pr [R |plan] · r + Pr [R |plan] · (1− r) · Pr [R |final ]

Djk (t) = 1 if (j , k) occurs on trial t, otherwise Djk (t) = 0

ln L (t) = ∑ Djk (t) · ln (pjk)

log likelihood for individual i on all 33 pairs of trials

ln L (Di ) =
33

∑
i=1

ln L (t)
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Grid analysis of parameters

Four parameters θ = (r , a, b, γ)

Used a grid of 21 points per parameter

214combinations

Memory r ∈ [.00, .05, ..., .45, .500, .55, ..., .95, 1.00]

Risk Aversion: a ∈ [.400, .45, ..., .85, .90, .95, ..., 1.35, 1.40]

Loss aversion: b ∈ [.50, .60, ..., 1.40, 1.50, 1.60, ...2.40, 2.50]

Choice parameter: γ ∈ [−5.00,−4.5, ...,−.5, 0.0, .5, ..., 4.5, 5.00]
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Topic 4:

Hierarchical Bayesian estimation of quantum parameters

Used to evaluate whether or not H0 : γ = 0 for the quantum model
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Hierarchical parameters

θi := vector of four model parameters θi = (θi1, θi2, θi3, θi4) for
person i

θ := vector for all participants, 400 parameters

π := vector of four hierarchical parameters, π = (π1, π2, π3, π4)

L (Di |θi ) := likelihood of data given model parms for person i

q(θi |π) := prior probability of parameters for person i dependent on
hierarchical parm’s

r (π) := prior probability over hierarchical parameters
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Specific Hierarchical Prior Assumptions

r (π) =
4

∏
j=1

r (πj )

r (πj ) = uniform [.05, .10, ....50, .., .90, .95]

q (θi |π) = ∏
j

q (θij |πj )

q (θij |πj ) = bin (πj , 21)
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Distributions

P (π, θ, D) = r (π) ·
N

∏
i=1

q (θi |π) · L (Di |θi )

P (π, D) = ∑
θ

P (π, θ, D)

P (D) = ∑
π

P (π, D)

P (π|D) =
P (π, D)

P (D)
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HBA estimates of group level parameters

The risk aversion hierarchical parameter distribution is located below
.50 implying the mean of the risk aversion parameter equals .65,
indicating somewhat strong risk aversion

The loss aversion hierarchical parameter distribution is located above
.50 implying the mean of the loss aversion equals 1.97, higher
sensitivity to losses
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HBA estimates of group level parameters

The hierarchical memory parameter is slightly above .50 implying the
mean of the memory parameter equals .59

The hierarchical distribution for the key quantum parameter lies
below .50 implying a mean value equal to −2.67.
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Concluding Comments

HBA analysis produced posterior for gamma < 0 (quantum regime)

Too early to conclude the quantum model is always superior to a
Markov model, need to examine more data sets

Also need to examine more prior distributions
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Further Reading

Thank you

Busemeyer, J. R. & Bruza, P. D. (2012, June) Quantum models of
cognition and decision. Cambridge University Press.
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